Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Cell Commun Signal ; 20(1): 106, 2022 07 16.
Article in English | MEDLINE | ID: covidwho-1938332

ABSTRACT

BACKGROUND: The COVID-19 pandemic has become the world's main life-threatening challenge in the third decade of the twenty-first century. Numerous studies have been conducted on SARS-CoV2 virus structure and pathogenesis to find reliable treatments and vaccines. The present study aimed to evaluate the immune-phenotype and IFN-I signaling pathways of COVID-19 patients with mild and severe conditions. MATERIAL AND METHODS: A total of 100 COVID-19 patients (50 with mild and 50 with severe conditions) were enrolled in this study. The frequency of CD4 + T, CD8 + T, Th17, Treg, and B lymphocytes beside NK cells was evaluated using flow cytometry. IFN-I downstream signaling molecules, including JAK-1, TYK-2, STAT-1, and STAT-2, and Interferon regulatory factors (IRF) 3 and 7 expressions at RNA and protein status were investigated using real-time PCR and western blotting techniques, respectively. Immune levels of cytokines (e.g., IL-1ß, IL-6, IL-17, TNF-α, IL-2R, IL-10, IFN-α, and IFN-ß) and the existence of anti-IFN-α autoantibodies were evaluated via enzyme-linked immunosorbent assay (ELISA). RESULTS: Immune-phenotyping results showed a significant decrease in the absolute count of NK cells, CD4 + T, CD8 + T, and B lymphocytes in COVID-19 patients. The frequency of Th17 and Treg cells showed a remarkable increase and decrease, respectively. All signaling molecules of the IFN-I downstream pathway and IRFs (i.e., JAK-1, TYK-2, STAT-1, STAT-2, IRF-3, and IRF-7) showed very reduced expression levels in COVID-19 patients with the severe condition compared to healthy individuals at both RNA and protein levels. Of 50 patients with severe conditions, 14 had anti-IFN-α autoantibodies in sera. Meanwhile, this result was 2 and 0 for patients with mild symptoms and healthy controls, respectively. CONCLUSION: Our results indicate a positive association of the existence of anti-IFN-α autoantibodies and immune cells dysregulation with the severity of illness in COVID-19 patients. However, comprehensive studies are necessary to find out more about this context. Video abstract.


Subject(s)
COVID-19 , Autoantibodies , Cytokines/metabolism , Humans , Interferons , Killer Cells, Natural , Pandemics , RNA, Viral , SARS-CoV-2 , Signal Transduction
2.
J Clin Med ; 11(12)2022 Jun 08.
Article in English | MEDLINE | ID: covidwho-1884242

ABSTRACT

Identifying patients' immune system status has become critical to managing SARS-CoV-2 infection and avoiding the appearance of secondary infections during a hospital stay. Despite the high volume of research, robust severity and outcome markers are still lacking in COVID-19. We recruited 87 COVID-19 patients and analyzed, by unbiased automated software, 356 parameters at baseline emergency department admission including: high depth immune phenotyping and immune checkpoint expression by spectral flow cytometry, cytokines and other soluble molecules in plasma as well as routine clinical variables. We identified 69 baseline alterations in the expression of immune checkpoints, Ig-like V type receptors and other immune population markers associated with severity (O2 requirement). Thirty-four changes in these markers/populations were associated with secondary infection appearance. In addition, through a longitudinal sample collection, we described the changes which take place in the immune system of COVID-19 patients during secondary infections and in response to corticosteroid treatment. Our study provides information about immune checkpoint molecules and other less-studied receptors with Ig-like V-type domains such as CD108, CD226, HVEM (CD270), B7H3 (CD276), B7H5 (VISTA) and GITR (CD357), defining these as novel interesting molecules in severe and corticosteroids-treated acute infections.

3.
BMC Med ; 20(1): 129, 2022 03 29.
Article in English | MEDLINE | ID: covidwho-1833313

ABSTRACT

BACKGROUND: SARS-CoV-2 infection portends a broad range of outcomes, from a majority of asymptomatic cases to a lethal disease. Robust correlates of severe COVID-19 include old age, male sex, poverty, and co-morbidities such as obesity, diabetes, and cardiovascular disease. A precise knowledge of the molecular and biological mechanisms that may explain the association of severe disease with male sex is still lacking. Here, we analyzed the relationship of serum testosterone levels and the immune cell skewing with disease severity in male COVID-19 patients. METHODS: Biochemical and hematological parameters of admission samples in 497 hospitalized male and female COVID-19 patients, analyzed for associations with outcome and sex. Longitudinal (in-hospital course) analyses of a subcohort of 114 male patients were analyzed for associations with outcome. Longitudinal analyses of immune populations by flow cytometry in 24 male patients were studied for associations with outcome. RESULTS: We have found quantitative differences in biochemical predictors of disease outcome in male vs. female patients. Longitudinal analyses in a subcohort of male COVID-19 patients identified serum testosterone trajectories as the strongest predictor of survival (AUC of ROC = 92.8%, p < 0.0001) in these patients among all biochemical parameters studied, including single-point admission serum testosterone values. In lethal cases, longitudinal determinations of serum luteinizing hormone (LH) and androstenedione levels did not follow physiological feedback patterns. Failure to reinstate physiological testosterone levels was associated with evidence of impaired T helper differentiation and augmented circulating classical monocytes. CONCLUSIONS: Recovery or failure to reinstate testosterone levels is strongly associated with survival or death, respectively, from COVID-19 in male patients. Our data suggest an early inhibition of the central LH-androgen biosynthesis axis in a majority of patients, followed by full recovery in survivors or a peripheral failure in lethal cases. These observations are suggestive of a significant role of testosterone status in the immune responses to COVID-19 and warrant future experimental explorations of mechanistic relationships between testosterone status and SARS-CoV-2 infection outcomes, with potential prophylactic or therapeutic implications.


Subject(s)
COVID-19 , Androgens , Female , Humans , Luteinizing Hormone/metabolism , Male , SARS-CoV-2 , Testosterone
4.
Heliyon ; 8(4): e09230, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1768134

ABSTRACT

SARS-CoV-2 infection causes a wide spectrum of disease severity. Identifying the immunological characteristics of severe disease and the risk factors for their development are important in the management of COVID-19. This study aimed to identify and rank clinical and immunological features associated with progression to severe COVID-19 in order to investigate an immunological signature of severe disease. One hundred and eight patients with positive SARS-CoV-2 PCR were recruited. Routine clinical and laboratory markers were measured, as well as myeloid and lymphoid whole-blood immunophenotyping and measurement of the pro-inflammatory cytokines IL-6 and soluble CD25. All analysis was carried out in a routine hospital diagnostic laboratory. Univariate analysis demonstrated that severe disease was most strongly associated with elevated CRP and IL-6, loss of DLA-DR expression on monocytes and CD10 expression on neutrophils. Unbiased machine learning demonstrated that these four features were strongly associated with severe disease, with an average prediction score for severe disease of 0.925. These results demonstrate that these four markers could be used to identify patients developing severe COVID-19 and allow timely delivery of therapeutics.

5.
J Clin Transl Res ; 6(3): 92-93, 2020 Sep 05.
Article in English | MEDLINE | ID: covidwho-1017588
SELECTION OF CITATIONS
SEARCH DETAIL